МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой биофизики и биотехнологии

В.Г.Артюхов 21.03.2022 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.03 Биофизика мембранных и клеточных процессов

- 1. Код и наименование направления подготовки 06.03.01 Биология
- 2. Профиль подготовки: биофизика
- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** кафедра биофизики и биотехнологии
- 6. Составители программы: Наквасина Марина Александровна, д.б.н. доцент
- **7. Рекомендована:** Научно-методическим советом медико-биологического факультета 21.03.2022 г., протокол № 2
- 8. Учебный год: 2023-2024 Семестр(ы)/Триместр(ы): 4

9. Цели и задачи учебной дисциплины

Целью дисциплины является освоение студентами современных представлений о структурной организации биомембран и механизмах их функционирования в норме, при воздействии физико-химических факторов и развитии патологических состояний организма.

Задачи учебной дисциплины:

- изучить классификацию, состав, структуру, физико-химические свойства, функции мембранных липидов, мембранных белков, мембранных углеводов, особенности их межмолекулярных взаимодействий;
 - изучить методы исследования мембран;
- изучить методы получения и направления использования искусственных мембран;
- изучить механизмы транспорта веществ и ионов через мембраны, структурнофункциональную организацию переносчиков, каналов, транспортных АТФаз;
 - изучить механизмы передачи внешнего сигнала в клетку;
- изучить роль биомембран, в осуществлении и регулировании метаболических процессов в клетке,
 - изучить роль мембран в межклеточных взаимодействиях;
 - изучить способы модификации мембран;
 - изучить типы и механизмы реализации клеточной гибели;
- изучить механизмы развития патологических состояний организма человека, связанных с нарушением структуры и функций мембранных компонентов;

10. Место учебной дисциплины в структуре ООП: Часть, формируемая участниками образовательных отношений, блока Б1.

Для освоения дисциплины студенты должны иметь представления о структурнофункциональной организации биологических молекул, строении и функциях клеток – объектов научных исследований, физико-химических методах анализа состояния биосистем.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ПК-1	Способен проводить сбор научно-технической (научной) информации, необходимой для решения задач исследования, поставленных специалистом более высокой квалификации	ПК-1.1	Обеспечивает сбо научно-технической (научной информации), необходимой для решения задач исследования, поставленных специалистом боле высокой квалификации.	структурной организации компонентов биомембран и механизмах их функционирования в норме, при воздействии физико-химических факторов и развитии ряда патологических состояний организма. Уметь: использовать теоретические

				организма человека.
ПК-2	Способен проводить отдельные виды исследований в рамках поставленных задач по стандартным методикам	ПК-2.2	Проводит исследование в соответствии с установленными полномочиями, составляет его описание и фиксирует результаты	Знать: современные представления о структурной организации компонентов биомембран и механизмах их функционирования в норме, при воздействии физико-химических факторов и развитии ряда патологических состояний организма. Уметь: использовать теоретические знания в области биофизики мембран в будущей профессиональной деятельности, связанной с исследованием структурно-функционального состояния мембран клеток и их компонентов в норме, при воздействии физико-химических факторов и развитии патологических состояний организма. Владеть: навыками выделения различных мембран, исследования их структурнофункционального состояния в норме, при воздействии физико-химических факторов и развитии патологических состояния в норме, при воздействии физико-химических факторов и развитии патологических состояний организма человека
ПК-3	Способен обрабатывать, анализировать и оформлять результаты исследований и разработок под руководством специалиста более высокой квалификации	ПК-3.2	Представляет / оформляет результаты лабораторных и/или полевых испытаний в соответствии с действующими технологическими регламентами / требованиями и формулирует выводы	Знать: современные представления о структурной организации компонентов биомембран и механизмах их функционирования в норме, при воздействии физико-химических факторов и развитии ряда патологических состояний организма. Уметь: использовать теоретические знания в области биофизики мембран в будущей профессиональной деятельности, связанной с исследованием структурно-функционального состояния мембран клеток и их компонентов в норме, при воздействии физико-химических факторов и развитии патологических состояний организма. Владеть: навыками выделения различных мембран, исследования их структурнофункционального состояния в норме, при воздействии физико-химических факторов и развитии патологических состояния в норме, при воздействии физико-химических факторов и развитии патологических состояний организма человека
ПК-4	Способен применять теоретические знания о молекулярных основах и механизмах физических и физико-химических процессов для решения отдельных практических задач в области биофизики и биотехнологии	ПК-4.2	Применяет современные методы биофизического эксперимента, исследования физических и физико-химических процессов на разных уровнях организации живой материи для решения отдельных практических задач в области биофизики и биотехнологии	Знать: современные представления о структурной организации компонентов биомембран и механизмах их функционирования в норме, при воздействии физико-химических факторов и развитии ряда патологических состояний организма. Уметь: использовать теоретические знания в области биофизики мембран в будущей профессиональной деятельности, связанной с исследованием структурно-функционального состояния мембран клеток и их компонентов в норме, при воздействии физико-химических факторов и развитии патологических состояний организма. Владеть: навыками выделения различных мембран, исследования их структурнофункционального состояния в норме, при

		во	здействии (физико-химически	х факторов
		И	развитии	патологических	состояний
		ор	ганизма чел	товека	

12. Объем дисциплины в зачетных единицах/час. —4 ЗЕ /144 ч

Форма промежуточной аттестации экзамен

13. Трудоемкость по видам учебной работы

	Вид учебной работы		Трудоемкость			
Вид учеб			Всего По семестрам			
			4 семестр			
Аудиторные занятия		48	48			
	16	16	16			
в том числе:	34	32	34			
	-	-	-			
Самостоятельная ра	бота	58	58			
в том числе: курсо	в том числе: курсовая работа (проект)					
Форма промежуточной аттестации		36	36			
(экзамен)						
И	гого:	108	108			

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплинь	I					
_	1. Лекции							
1	Введение в биофизику мембранных и клеточных процессов	Биомембранология как наука. Биофизика мембран. Определение и функции биомембран. История мембранологии. Перспективы развития мембранологии. Методы исследования мембран: биохимические, биофизические, физиологические, генетические, иммунологические. Биофизические методы исследования мембран: дифракционные (рентгеновская дифракция, дифракция нейтронов); резонансные (ядерный магнитный резонанс, электронный парамагнитный резонанс); оптические (абсорбционная спектроскопия, флуоресценция и метод флуоресцентных зондов, дисперсия оптического вращения, круговой дихроизм, инфракрасная спектрофотометрия); дифференциальная сканирующая микрокалориметрия; метод радиоактивных меток; метод моделирования мембран.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273					
2	Структурно- функциональная организация компонентов биомембран	Классификация, состав, структура, и функции мембранных липидов. Особенности липидного состава мембран клеток прокариот, эукариот и вирусов. Фазовые переходы липидов в мембране. Лиотропный и термотропный мезоморфизм липидов биомембран. Кинки, механизм их образования. Структурная асимметрия липидов. Связь между фазовым состоянием липидов и функцией мембран. Классификация, структура, функции и локализация мембранных белков. Структурно-функциональная организация мембранного каркаса эритроцитарной клетки. Характеристика основных белков эритроцитарной мембраны: спектрина, актина, белка полосы 3, гликофоринов и др. Характеристика углеводных компонентов биомембран. Структура и функции плазматических мембран на примере мембран эритроцитов. Особенности межмолекулярных взаимодействий в мембранах. Физические основы	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273					

	T		
		внутримембранных взаимодействий. Липидлипидные, белок-липидные и белок-белковые взаимодействия в мембранах, их роль в функционировании биомембран. Понятие об аннулярных липидах. Понятие о рафтах. Развитие представлений о структурной организации биомембран. Модели биомембран: Даниэлли и Давсона, Робертсона, Зингера и Никольсона, Конева и сотр. и др.	
3.	Мембранный транспорт	Общая характеристика процессов транспорта веществ через мембрану. Движущие силы и механизмы мембранного транспорта. Термодинамические уравнения и критерии процессов пассивного и активного транспорта. Пассивный транспорт веществ. Пассивный транспорт ионов. Уравнения диффузии, проницаемости, константа проницаемости. Индуцированный ионный транспорт. Подвижные переносчики (ионофоры). Использование ионофоров в исследованиях мембран и медицине. Ионный транспорт через селективные каналы. Классификация ионных каналов. Структурнофункциональная организация ионных каналов мембран (потенциалзависимые калиевые, натриевые, кальциевые каналы). Дискретное описание транспорта через ионные каналы. Активный транспорт. Первично-и вторично-активный транспорт. Структура, функциональные и физико-химические свойства Na, K-ATФазы и Ca — АТФазы. Молекулярные основы функционирования систем вторично-активного транспорта. Перенос через мембрану макромолекул и частиц: экзоцитоз и эндоцитоз.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
4	Проблемы передачи информации в клетку	Общая характеристика процессов передачи информации в клетке. Сигналтрансдукторные системы клетки. Понятие о первичных и вторичных мессенджерах. Классификация, особенности структурно-функциональной организации мембранных рецепторов. Характеристика аденилатциклазного пути передачи сигнала в клетку. Характеристика фосфоинозитидного пути передачи сигнала в клетку. Пути нейрогуморальной регуляции функций клеток.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
5	Роль биомембран в осуществлении метаболических процессов в клетке	Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространственно-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса).	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
6	Роль мембран в межклеточных взаимодействиях	Основные формы межклеточных взаимодействий. Роль компонентов биомембран в осуществлении межклеточных взаимодействий. Прикрепительные, запирающие и коммуникационные контакты между клетками. Адгезивные белки мембран: интегрины, кадгерины, селектины, иммуноглобулины.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
7	Медицинские аспекты биофизики мембран	Способы модификации природных и искусственных мембран. Свободнорадикальноепероксидное окисление липидов мембран в норме и при патологических процессах. Активные формы кислорода, механизм их образования, свойства,	ЭУМК «Биофизика мембранных и клеточных процессов»

		пути утилизации, роль в регулировании метаболических процессов в биосистемах. Антиоксиданты, их классификация, локализация, свойства, механизмы биологического действия. Понятие о прооксидантах и окислительном стрессе. Редокс-регуляция — один из механизмов регулирования метаболических процессов. Патологии организма человека, связанные с интенсификацией свободно-радикальных процессов. Клеточная гибель. Апоптоз. Некроз. Аутофагия. Роль компонентов биомембран в реализации процессов клеточной гибели. Патологии организма человека, связанные с усилением и ослаблением процессов клеточной гибели. Иммунопатологии, связанные с нарушением структуры и функций мембран клеток человека. Патологии человека, связанные с нарушениями ионного гомеостаза клеток и функционирования мембранных транспортных систем.	https://edu.vsu.ru /course/view.php ?id=7273
		2. Практические занятия	
1	Введение в биофизику мембранных и клеточных процессов	Определение биомембран. Методы исследования биомембран: биохимические, биофизические, генетические, Выделение и разделение биомембран. Идентификация мембран. Выделение мембран эритроцитов. Оптические методы исследования мембран. Электронномикроскопические методы исследования мембран. Проточная цитофлуориметрия в исследовании биомембран. Флуоресцентная микроскопия в исследовании мембран.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
2	Структурно- функциональная организация компонентов биомембран	Структурно-функциональная организация мембран клеток крови. Исследование структурного состояния эритроцитарных и лимфоцитарных мембран с помощью флуоресцентных зондов.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
3	Мембранный транспорт	Определение уровня функциональной активности Са-АТФазы эритроцитарных мембран.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
4	Проблемы передачи информации в клетку	Сигналтрансдукторные системы клетки. Рецепторы. Вторичные мессенджеры. Определение уровня ионов кальция в клетках в норме и после воздействия физико-химических факторов.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273
5	Роль биомембран в осуществлении метаболических процессов в клетке	Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространственно-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса).	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273

6	Роль мембран в межклеточных взаимодействиях	Основные формы межклеточных взаимодействий. Роль компонентов биомембран в осуществлении межклеточных взаимодействий. Прикрепительные, запирающие и коммуникационные контакты между клетками. Адгезивные белки мембран: интегрины,	ЭУМК «Биофизика мембранных и клеточных процессов»
		кадгерины, селектины, иммуноглобулины.	https://edu.vsu.ru /course/view.php ?id=7273
7	Медицинские аспекты биофизики мембран	Исследование интенсивности свободнорадикальных процессов на поверхности эритроцитарных и лимфоцитарных клеток. Исследование уровня антиоксидантных ферментов эритроцитов и лимфоцитов после воздействия физико-химических факторов. Исследование структурно-функциональных модификаций эритроцитарных мембран в присутствии лекарственных препаратов. Исследование маркеров апоптоза лимфоцитов, модифицированных воздействием физико-химических агентов.	ЭУМК «Биофизика мембранных и клеточных процессов» https://edu.vsu.ru /course/view.php ?id=7273

13.2. Темы (разделы) дисциплины и виды занятий

№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практические занятия	Самостоятельная работа	Всего
1	Введение в биофизику мембранных и клеточных процессов	2	4	10	16
2	Структурно- функциональная организация компонентов биомембран	2	8	12	22
3	Мембранный транспорт	4	4	10	18
4	Проблемы передачи информации в клетку	2	2	6	10
5	Роль биомембран в осуществлении метаболических процессов в клетке	2	4	4	10
6	Роль мембран в межклеточных взаимодействиях	2	2	4	8
7	Медицинские аспекты биофизики мембран	2	10	12	24
	Итого:	16	34	60	108

14. Методические указания для обучающихся по освоению дисциплины:

Изучение дисциплины «Биофизика мембранных и клеточных процессов» предусматривает чтение лекций, проведение практических занятий и самостоятельную работу студентов. Выполнение практических работ и самостоятельная работа осуществляются с использованием учебных пособий, указанных в п.15 и п.16. Студенты выполняют практические работы, отвечают на тестовые задания, выполняют задания текущей аттестации.

Студенты самостоятельно прорабатывают и усваивают теоретические знания с использованием рекомендуемой учебной литературы, учебно-методических пособий, согласно указанному списку (п.15 и п.16).

На практических занятиях студенты либо индивидуально, либо в составе малой группы выполняют учебно-исследовательскую работу. В ходе выполнения практических работ студенты приобретают навыки обращения с биологическими объектами, лабораторным оборудованием и инструментарием, самостоятельно осуществляют эксперименты, регистрируют, анализируют и интерпретируют результаты биофизических исследований мембранных компонентов клетки. Результаты учебно-исследовательской работы, включая необходимые расчеты, заключения и выводы, ответы на вопросы (задания) оформляются

в рабочей тетради студента в виде протокола исследования. В конце практического занятия результаты и материалы учебно-исследовательской работы докладываются преподавателю, при необходимости обсуждаются в группе (отчет о практическом занятии). В случаях пропуска практического занятия по какимлибо причинам студент обязан его самостоятельно выполнить под контролем преподавателя во время индивидуальных консультаций.

Текущая аттестация обеспечивает проверку освоения учебного материала, приобретения знаний, умений и навыков в процессе аудиторной и самостоятельной работы студентов, формирования компетенций.

Текущая аттестация по дисциплине «Биофизика мембранных и клеточных процессов» проводится 2 раза в семестр. Текущие аттестации включают в себя регулярные отчеты студентов по практическим работам, выполнение тестовых и иных заданий к разделам дисциплины.

При подготовке к текущей аттестации студенты изучают и конспектируют рекомендуемую преподавателем учебную литературу по темам практических занятий, самостоятельно осваивают понятийный аппарат.

Планирование и организация текущих аттестации знаний, умений и навыков осуществляется в соответствии с содержанием рабочей программы и календарно-тематическим планом с применением фонда оценочных средств.

Текущая аттестация является обязательной, ее результаты оцениваются в балльной системе и по решению кафедры могут быть учтены при промежуточной аттестации обучающихся. Формой промежуточной аттестации знаний, умений и навыков обучающихся является зачет.

Освоение содержания дисциплины осуществляется с использованием дистанционных образовательных технологий (ДОТ) — электронного учебного курса «Биофизика мембранных и клеточных процессов», расположенного по адресу: https://edu.vsu.ru/course/view.php?id=7273 на портале «Электронный университет ВГУ». Перед началом учебных занятий обучающийся должен:

- 1. Проверить наличие доступа к курсу. В случае выявления проблем своевременно обратиться к преподавателю или в службу технической поддержки.
- 2. Изучить интерфейс курса, знать способы взаимодействия с преподавателем в рамках ЭУК: сообщение на форуме, отправка личного сообщения, чат.
- 3. Ознакомиться с целью и задачами дисциплины, перечнем формируемых компетенций и результатов обучения, программой дисциплины, календарным планом, траекторией освоения дисциплины, комплексом вопросов и требований для промежуточной аттестации.
- 4. Ознакомиться с перечнем основной и дополнительной литературы, а также списком электронных образовательных ресурсов, необходимых для освоения дисциплины. Получить доступ к электронным библиотечным системам, на которые оформлена подписка ФГБОУ ВО «ВГУ».

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Артюхов В.Г. Биофизика: учебник для ВУЗов / под ред. В.Г. Артюхова М. : Академический проект, 2009 294 с.

б) дополнительная литература:

№ п/п	Источник
2	Наквасина М.А. Механизмы клеточной гибели: апоптоз, аутофагия, некроз: учеб.пособие / М.А. Наквасина, В.Г. Артюхов. — Воронеж : Издательский дом ВГУ, 2019. — 164 с.
3	Артюхов В.Г. Структурно-функциональное состояние биомембран и межклеточные взаимодействия : учеб.пособие / В.Г. Артюхов, М.А. Наквасина. — Воронеж : ИПЦ ВГУ, 2008. — 156 с.
4	Артюхов В.Г. Биологические мембраны: структурная организация, функции, модификация физико-химическими агентами : учеб.пособие. / В.Г. Артюхов, М.А. Наквасина. — Воронеж: Изд-во Воронеж.гос. ун-та, 2000. — 296 с.
5	Рубин А.Б. Биофизика : в 2 т. Т. 2: Биофизика клеточных процессов : учеб. / А.Б. Рубин.3-е изд М. : Наука, 2004. Т. 2. — 469 с.
6	Молекулярная биология клетки : в 3 т. / Б. Альбертс [и др.]. — М. : Мир, 1994. — Т.1. — 517 с.
7	Геннис Р. Биомембраны: молекулярная структура и функции / Р. Геннис. – М. : Мир, 1997. – 624 с.
8	Пальцев М.А. Межклеточные взаимодействия / М.А. Пальцев, А.А. Иванов. – М.: Медицина, 1995. – 224 с

в)информационные электронно-образовательные ресурсы(официальные ресурсы интернет)*:

№ п/п	Ресурс
1	<u>www.lib.vsu.ru</u> – 3HБ ВГУ
2	Elibrary.ru – научная электронная библиотека
3	https://edu.vsu.ru/course/view.php?id=7273 – ЭУМК «Биофизика мембранных и клеточных
Ŭ	процессов» на платформе «Электронный университет ВГУ»
	Покровский А.А. Клеточная сигнализация [Электронный ресурс]: учебное пособие/
1	Покровский А.А., Титова Н.М.— Электрон. текстовые данные.— Красноярск:
4	Сибирский федеральный университет, 2019.— 116 с.— Режим доступа:
	http://www.iprbookshop.ru/100031.html.— 35C «IPRbooks»
	Биофизика [Электронный ресурс]: учебник для вузов/ В.Г. Артюхов [и др.].— Электрон.
5	текстовые данные.— Москва, Екатеринбург: Академический Проект, Деловая книга,
	2016.— 295 с.— Режим доступа: http://www.iprbookshop.ru/60018.html.— ЭБС «IPRbooks»

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Артюхов В.Г. Биофизика: учебник для ВУЗов / под ред. В.Г. Артюхова М. : Академический проект, 2009 294 с.
2	Наквасина М.А. Механизмы клеточной гибели: апоптоз, аутофагия, некроз: учеб.пособие / М.А. Наквасина, В.Г. Артюхов. — Воронеж : Издательский дом ВГУ, 2019. — 164 с.
3	Артюхов В.Г. Структурно-функциональное состояние биомембран и межклеточные взаимодействия : учеб.пособие / В.Г. Артюхов, М.А. Наквасина. — Воронеж : ИПЦ ВГУ, 2008. — 156 с.
4	Артюхов В.Г. Биологические мембраны: структурная организация, функции, модификация физико-химическими агентами : учеб.пособие. / В.Г. Артюхов, М.А. Наквасина. — Воронеж: Изд-во Воронеж.гос. ун-та, 2000. — 296 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Освоение содержания дисциплины осуществляется с использованием дистанционных образовательных технологий (ДОТ) — электронного учебного курса «Биофизика мембранных и клеточных процессов», расположенного по адресу: https://edu.vsu.ru/course/view.php?id=7273 на портале «Электронный университет ВГУ».

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения занятий лекционного типа:

Специализированная мебель, Проектор EpsonEMP-X52, ноутбук SamsungNP-RV410 S01R с возможностью подключения к сети «Интернет», WinPro 8, OfficeSTD, Kaspersky Endpoint Security, Google Chrome.

Учебная аудитория для проведения занятий семинарского типа (лабораторные занятия), для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации

Специализированная мебель, лабораторная посуда, pH-метр портативный HI83141, микроскопы Микмед, Спектрофотометр ПЭ-54-00 УФ, программно-методический комплекс биохемилюм.анализа, центрифуга Eppendorf, шейкер-инкубатор для планшета Elmi SHAKER ST 3

Учебная аудитория для проведения занятий семинарского типа (лабораторные занятия), для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации

Специализированная мебель, биохимический люминометр БХЛ-07, спектрофотометр СФ-2000; весы портативные Scout-Pro, дистилятор с баком накопителем Liston;

компьютер (системный блок Celeron, монитор SyncMaster 753DFX); мешалка магнитная MS-300; микроскоп медицинский БИОМЕД исполнение БИОМЕД 2; мобильный компьютерный комплекс КАИ-М; рН-метр карманный, короткий электрод; сушилка для посуды электрическая Экрос ПЭ-2010; термостат ЛАБ-ТЖ-ТС-01/12-100; термостат твердотельный цифровой Віо ТDВ-100; термостат электрический суховоздушный ТС-1/80 СПУ; "Униплан" планшетный фотометр с 2-мя фильтрами; центрифуга МіпіSріп для пробирок; УЗ-диспергатор SONICATOR Q500, QSONICA; роторный испаритель IKA RV-10

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

	Наименование			
Nº	раздела	((1)	Индикатор(ы)	0
п/п	дисциплины	Компетенция(и)	достижения	Оценочные средства
	(модуля)		компетенции	
			ПК-1.1:	
			Обеспечивает	
		ПК-1: Способен	сбор научно- технической	
		проводить сбор	(научной	
		научно-технической	информации),	
		(научной) информации,	необходимой для	
		необходимой для	решения задач	
		решения задач	исследования,	
		исследования,	поставленных специалистом	
		поставленных	более высокой	
		специалистом	квалификации.	
		более высокой	' '	
		квалификации		
		ПК-2: Способен	ПК-2.2: Проводит	
		проводить	исследование в соответствии с	
		отдельные виды	установленными	
		исследований в	полномочиями,	
		рамках поставленных	составляет его	
		задач по	описание и	Вопросы и задания к
		стандартным	фиксирует	практическим занятиям
		методикам	результаты	Раздел 1
	Введение в		ПК-3.2:	Тестовые задания
	биофизику	ПК-3: Способен	Представляет /	Вопросы для контрольных
1.	мембранных и	обрабатывать, анализировать и	оформляет	работ
	клеточных	оформлять	результаты	
	процессов	результаты	лабораторных	
		исследований и	и/или полевых испытаний в	
		разработок под	соответствии с	
		руководством	действующими	
		специалиста более высокой	технологическими	
		квалификации	регламентами /	
		·	требованиями и формулирует	
		ПК-4: Способен	формулирует Выводы	
		применять	23.20ды	
		теоретические знания о	ПК-4.2:	
		молекулярных	_	
		основах и	Применяет	
		механизмах	современные методы	
		физических и	биофизического	
		физико-химических	эксперимента,	
		процессов для решения отдельных	исследования	
		практических задач	физических и	
		в области	физико-	
		биофизики и	химических	
		биотехнологии	процессов на разных уровнях	
			организации	
			живой материи	

Nº п/п	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
			для решения отдельных практических задач в области биофизики и биотехнологии	
		ПК-1: Способен проводить сбор научно-технической (научной) информации, необходимой для решения задач исследования, поставленных специалистом более высокой квалификации	Обеспечивает сбор научнотехнической (научной информации), необходимой для решения задач исследования, поставленных специалистом более высокой квалификации. ПК-2.2: Проводит	
		проводить отдельные виды исследований в рамках поставленных задач по стандартным методикам	исследование в соответствии с установленными полномочиями, составляет его описание и фиксирует результаты	Вопросы и задания к практическим занятиям Раздел 2 Тестовые задания
2.	Структурно- функциональная организация компонентов биомембран	ПК-3: Способен обрабатывать, анализировать и оформлять результаты исследований и разработок под руководством специалиста более высокой квалификации	ПК-3.2: Представляет / оформляет результаты лабораторных и/или полевых испытаний в соответствии с действующими технологическими регламентами / требованиями и	Вопросы для контрольных работ
		ПК-4: Способен применять теоретические знания о молекулярных основах и	формулирует выводы ПК-4.2: Применяет	
		механизмах физических и физико-химических процессов для решения отдельных практических задач в области биофизики и биотехнологии	современные методы биофизического эксперимента, исследования физических и физико-химических процессов на разных уровнях	

Nº п/п	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
			живой материи для решения отдельных практических задач в области биофизики и биотехнологии	
3.	Мембранный транспорт	ПК-1: Способен проводить сбор научно-технической (научной) информации, необходимой для решения задач исследования, поставленных специалистом более высокой квалификации ПК-2: Способен проводить отдельные виды исследований в рамках поставленных задач по стандартным методикам ПК-3: Способен обрабатывать, анализировать и оформлять результаты исследований и разработок под руководством специалиста более высокой квалификации ПК-4: Способен применять теоретические знания о молекулярных основах и механизмах физических и физико-химических и физико-химических процессов для решения отдельных практических задач в области биофизики и биотехнологии	ПК-1.1: Обеспечивает сбор научнотехнической (научной информации), необходимой для решения задач исследования, поставленных специалистом более высокой квалификации. ПК-2.2: Проводит исследование в соответствии с установленными полномочиями, составляет его описание и фиксирует результаты ПК-3.2: Представляет / оформляет результаты лабораторных и/или полевых испытаний в соответствии с действующими технологическими регламентами / требованиями и формулирует выводы ПК-4.2: Применяет современные методы биофизического эксперимента, исследования физических и физико-	Вопросы и задания к практическим занятиям Раздел 3 Тестовые задания Вопросы для контрольных работ

Nº п/п	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
			химических процессов на разных уровнях организации живой материи для решения отдельных практических задач в области биофизики и	
4.	Проблемы передачи информации в клетку	ПК-1: Способен проводить сбор научно-технической (научной) информации, необходимой для решения задач исследования, поставленных специалистом более высокой квалификации ПК-2: Способен проводить отдельные виды исследований в рамках поставленных задач по стандартным методикам ПК-3: Способен обрабатывать, анализировать и оформлять результаты исследований и разработок под руководством специалиста более высокой квалификации ПК-4: Способен применять теоретические знания о молекулярных основах и механизмах физических и физико-химических и физико-химических процессов для решения отдельных практических задач в области биофизики и	ПК-1.1: Обеспечивает сбор научнотехнической (научной информации), необходимой для решения задач исследования, поставленных специалистом более высокой квалификации. ПК-2.2: Проводит исследование в соответствии с установленными полномочиями, составляет его описание и фиксирует результаты ПК-3.2: Представляет / оформляет результаты лабораторных и/или полевых испытаний в соответствии с действующими технологическими регламентами / требованиями и формулирует выводы ПК-4.2: Применяет современные методы биофизического эксперимента, исследования физических и	Вопросы и задания к практическим занятиям Раздел 4 Тестовые задания Вопросы для контрольных работ

Nic	Наименование		Индикатор(ы)	
№ п/п	раздела дисциплины (модуля)	Компетенция(и)	достижения компетенции	Оценочные средства
		биотехнологии	физико- химических процессов на разных уровнях организации живой материи для решения отдельных практических задач в области биофизики и	
5	Роль биомембран в осуществлении метаболических процессов в клетке	ПК-1: Способен проводить сбор научно-технической (научной) информации, необходимой для решения задач исследования, поставленных специалистом более высокой квалификации ПК-2: Способен проводить отдельные виды исследований в рамках поставленных задач по стандартным методикам ПК-3: Способен обрабатывать, анализировать и оформлять результаты исследований и разработок под руководством специалиста более высокой квалификации ПК-4: Способен применять теоретические знания о молекулярных основах и механизмах физических и физико-химических процессов для решения отдельных практических задач в области	ПК-1.1: Обеспечивает сбор научнотехнической (научной информации), необходимой для решения задач исследования, поставленных специалистом более высокой квалификации. ПК-2.2: Проводит исследование в соответствии с установленными полномочиями, составляет его описание и фиксирует результаты ПК-3.2: Представляет / оформляет результаты лабораторных и/или полевых испытаний в соответствии с действующими технологическими регламентами / требованиями и формулирует выводы ПК-4.2: Применяет современные методы биофизического эксперимента, исследования	Вопросы и задания к практическим занятиям Раздел 5 Тестовые задания Вопросы для контрольных работ

Nº п/п	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
		биофизики и биотехнологии	физических и физико- химических процессов на разных уровнях организации живой материи для решения отдельных практических задач в области биофизики и биотехнологии	
6	Роль мембран в межклеточных взаимодействиях	ПК-1: Способен проводить сбор научно-технической (научной) информации, необходимой для решения задач исследования, поставленных специалистом более высокой квалификации ПК-2: Способен проводить отдельные виды исследований в рамках поставленных задач по стандартным методикам ПК-3: Способен обрабатывать, анализировать и оформлять результаты исследований и разработок под руководством специалиста более высокой квалификации ПК-4: Способен применять теоретические знания о молекулярных основах и механизмах физических и физико-химических процессов для решения отдельных практических задач	ПК-1.1: Обеспечивает сбор научнотехнической (научной информации), необходимой для решения задач исследования, поставленных специалистом более высокой квалификации. ПК-2.2: Проводит исследование в соответствии с установленными полномочиями, составляет его описание и фиксирует результаты ПК-3.2: Представляет / оформляет результаты лабораторных и/или полевых испытаний в соответствии с действующими технологическими регламентами / требованиями и формулирует выводы ПК-4.2: Применяет современные методы биофизического эксперимента,	Вопросы и задания к практическим занятиям Раздел 6 Тестовые задания Вопросы для контрольных работ

№ п/п	Наименование раздела дисциплины	Компетенция(и)	Индикатор(ы) достижения	Оценочные средства
	(модуля)		компетенции	
	(шодулл)	в области	исследования	
		биофизики и	физических и	
		биотехнологии	физико-	
			химических	
			процессов на	
			разных уровнях	
			организации	
			живой материи	
			для решения	
			отдельных	
			практических	
			задач в области	
			биофизики и	
			биотехнологии	
		ПК-1: Способен	ПК-1.1:	
		проводить сбор	Обеспечивает	
		научно-технической	сбор научно-	
		(научной)	технической	
		информации,	(научной	
		необходимой для	информации),	
		решения задач	необходимой для	
		исследования,	решения задач	
		поставленных	исследования,	
		специалистом	поставленных	
		более высокой	специалистом	
		квалификации	более высокой	
		ПК-2: Способен	квалификации.	
		проводить		
		отдельные виды	ПК-2.2: Проводит	
		исследований в	исследование в	
		рамках	соответствии с	
		поставленных	установленными	
		задач по	полномочиями,	Вопросы и задания к
		стандартным	составляет его	практическим занятиям
	Monuments	методикам	описание и	Раздел 7
7	Медицинские		фиксирует	
7	аспекты биофизики	ПК-3: Способен	результаты	Тестовые задания
	мембран	обрабатывать,		Вопросы для контрольных
		анализировать и	ПК-3.2:	работ
		оформлять	Представляет /	
		результаты	оформляет	
		исследований и	результаты	
		разработок под	лабораторных	
		руководством	и/или полевых	
		специалиста более	испытаний в	
		высокой	соответствии с	
		квалификации	действующими	
		ПК 4: Об	технологическими	
		ПК-4: Способен	регламентами /	
		применять	требованиями и	
		теоретические	формулирует	
		3НАНИЯ О	выводы	
		молекулярных	ПК-4.2:	
		OCHOBAX N	I IN-4.∠.	
		механизмах	Применяет	
		физических и физико-химических	современные	
			методы	
		процессов для		

№ п/п	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
		практических задач	эксперимента,		
		в области	исследования		
		биофизики и	физических и		
		биотехнологии	физико-		
			химических		
			процессов на		
			разных уровнях		
			организации		
			живой материи		
			для решения		
			отдельных		
			практических		
			задач в области		
			биофизики и		
			биотехнологии		
Промежуточная аттестация Перечень вопро				Перечень вопросов к экзамену	
	форма контроля – экзамен				

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Вопросы и задания к практическим занятиям Раздел 1

- 1. Назовите основные группы методов исследования биомембран. Каковы особенности биофизических методов изучения биомембран?
- 2. Охарактеризуйте основные этапы выделения и разделения биомембран.
- 3. Какие методы исследования используют для изучения структурно-функционального состояния липидного компонента биомембран? Охарактеризуйте их.
- 4. Какие методы исследования используют для изучения белок-липидных взаимодействий в биомембранах? Какова их физико-химическая основа?
- 5. Охарактеризуйте основные этапы выделения мембранных белков из биообъектов.
- 6. С какой целью в мембранологии применяют детергенты? Каковы их природа, особенности физико-химических свойств?
- 7. Какие критерии применяют для оценки чистоты мембранных фракций?

Вопросы и задания к практическим занятиям Раздел 2

- 8. Какие особенности структуры мембранных липидов обеспечивают выполнение ими различных функций?
- 9. Что понимают под фазовыми переходами липидов в мембране? Какие факторы влияют на фазовое состояние мембранных липидов?
- 10. На какие группы подразделяют мембранные белки? Каковы особенности их строения и выполняемые функции?
- 11. Какие свойства липидных молекул обеспечивают выполнение функций мембранными белками?
- 12. Что понимают под белок-липидными взаимодействиями в мембранах? Какие типы связей участвуют в их поддержании?
- 13. Охарактеризуйте модели строения биомембран.
- 14. С какими структурными компонентами мембраны и их свойствами связана проницаемость биомембран для различных веществ?
- 15. Что такое асимметрия компонентов мембран, каковы ее причины и значение для нормального функционирования биомембран?
- 16. Опишите методы получения искусственных мембран.
- 17. Что представляют собой липосомы и протеолипосомы?

- 18. функционирования липосом и протеолипосом: с какой целью они разрабатываются?
- 19. Какое значение имеют исследования искусственных мембранных структур? Каковы области их применения?

Вопросы и задания к практическим занятиям Раздел 3

- 1. Какие типы транспорта веществ и ионов через мембрану вам известны? Каковы движущие силы, критерии, термодинамические уравнения пассивного и активного транспорта веществ и ионов через мембрану?
- 2. Опишите особенности транспорта ионов через ионные каналы. Охарактеризуйте структурнофункциональную организацию ионных каналов.
- 3. Каковы молекулярные механизмы первично-активного транспорта веществ?
- 4. Каковы особенности структурной организации и механизмы функционирования Na⁺, K⁺- и Ca²⁺- ATФaз?
- 5. Каковы молекулярные механизмы вторично-активного транспорта?
- 6. Каковы особенности структуры и механизмы функционирования ионофоров каналообразователей?
- 7. Как осуществляется перенос через мембрану макромолекул и частиц?

Вопросы и задания к практическим занятиям Раздел 4

- 1. Что представляют собой рецепторы, каковы их свойства, классификация, функции?
- 2. Что понимают под лиганд-рецепторными взаимодействиями? Какова их природа?
- 3. Что понимают под «каскадом» передачи внешнего сигнала через клеточную мембрану?
- 4. Опишите роль биомембран в осуществлении передачи информации внутрь клетки. Что понимают под развитием первичного и вторичного ответа в процессе передачи информации в клетку?
- 5. Что представляют собой вторичные мессенджеры? Каковы их свойства?
- 6. Опишите основные пути трансдукции внешнего сигнала в клетку.
- 7. Что понимают под термином «амплификация внешнего сигнала»?
- 8. Каковы основные механизмы нейрогуморальной регуляции функций клеток?
- 9. Какие патологические состояния организма человека связаны с нарушением процессов трансдукции внешнего сигнала в клетку?
- 10. Каково теоретическое и практическое значение исследований, направленных на выявление механизмов передачи информации в клетку?

Вопросы и задания к практическим занятиям Раздел 5

- 1. Охарактеризуйте основные механизмы регулирования функциональной активности ферментов и ферментных систем в клетке.
- 2. Какова роль мембран в интеграции процессов клеточного метаболизма?
- 3. Что понимают под адсорбционным механизмом регулирования ферментативной активности?
- 4. Какие теоретические и экспериментальные предпосылки послужили основой для создания концепции о пространственно-структурной организации важнейших метаболических систем клетки?
- 5. Что называют метаболоном? Каково физиологическое значение образования гликолитического метаболона?
- 6. Какие факторы оказывают влияние на функционирование компонентов метаболона?

Вопросы и задания к практическим занятиям Раздел 6

- 1. Опишите роль биомембран в осуществлении межклеточных взаимодействий.
- 2. Какие белки называют адгезивными, каковы особенности их строения, классификация и роль в обеспечении межклеточных взаимодействий?
- 3. Охарактеризуйте особенности структуры и функций интегринов, иммуноглобулинов, селектинов, кадгеринов.
- 4. Какова роль внеклеточного матрикса в осуществлении межклеточных взаимодействий?
- 5. Что представляют собой щелевые соединения? Какова их роль в осуществлении межклеточных взаимодействий?

Вопросы и задания к практическим занятиям Раздел 7

- 1. Что такое пероксидное окисление липидов, какие факторы инициируют этот процесс, какова последовательность стадий его развития?
- 2. Что такое активные формы кислорода, каковы механизмы их образования, биологическая роль и методы обнаружения?
- 3. Обоснуйте утверждение: «Биомембраны непременные участники совокупности процессов возникновения и развития ряда патологических состояний организма человека».
- 4. В чем отличие синглетного молекулярного кислорода от других активных форм кислорода?
- 5. Что называют оксидативной модификацией макромолекул и окислительным стрессом?
- 6. Дайте определение понятия «антиоксиданты». Каковы основные механизмы действия антиоксидантов?
- 7. Назовите типы клеточной гибели. В чем их сходство и различия?
- 8. Что представляет собой апоптоз? Каковы его индукторы, регуляторы и физиологическое значение?
- 9. Охарактеризуйте известные пути реализации апоптоза.
- 10. Каковы основные «участники» программированной клеточной гибели?
- 11. Опишите последовательность этапов и взаимодействие «участников» апоптоза.
- 12. Каковы способы обнаружения апоптоза клеток?
- 13. Каково теоретическое и практическое значение исследований, направленных на выявление механизмов реализации и способов регулирования апоптоза?
- 14. Какие патологические состояния организма человека связаны с усилением и ослаблением процессов клеточной гибели и, в частности, апоптоза?

Практическая работа (пример)

Практическая работа № 1. Выделение эритроцитарных мембран из крови доноров

Цель работы: освоение метода выделения эритроцитарных мембран.

Материалы и оборудование: кровь доноров с антикоагулянтом, хлорид натрия, трисгидроксиметиламинометан (трис), соляная кислота, этилендиаминтетраацетат (ЭДТА), центрифужные пробирки, центрифужные весы, центрифуга, рН-метр, пастеровские пипетки, фильтровальная бумага.

Ход работы:

Кровь с антикоагулянтом центрифугировать при 3000 об/мин в течение 10 мин. Плазму и верхний слой лейкоцитов отобрать пастеровской пипеткой и удалить. Эритроциты три раза промыть охлажденным раствором, содержащим 0,145 моль/лNaCl в 0,02 моль/л трис-HCl буфере (рН 7,6), каждый раз осаждая клетки в том же режиме. Мембраны эритроцитов получают путем гипоосмотического гемолиза их раствором, содержащим 10 ммоль/л ЭДТА в 10 ммоль/л трис-HCl буфере (рН 7,6). Для этого один объем отмытых эритроцитов быстро и энергично перемешать с 20 объемами охлажденной до 4 °C гемолизирующей среды и выдержать при этой температуре в течение 15 мин. Гемолизат центрифугировать на центрифуге при 18000 об/мин в течение 15 мин. Надосадочную жидкость удалить, а осадок мембран промыть три раза 20 объемами 10 ммоль/л трис-HCl буфера (рН 7,6), каждый раз осаждая мембраны в том же режиме. В дальнейших экспериментах использовать свежеприготовленную суспензию мембран.

Ответить на вопросы:

- 1. Почему эритроцитарные мембраны являются удобной моделью для изучения структуры и свойств мембран клеток?
- 2. Охарактеризовать особенности структуры и функций эритроцитарных мембран и их компонентов.
- 3. Какие компоненты входят в состав мембранного каркаса эритроцитов? Какие функции выполняет мембранный каркас?
- 4. Какие методы могут быть использованы для выделения эритроцитарных мембран?
- 5. Какие методы используют для изучения структурного состояния эритроцитарных мембран? Что позволяют исследовать эти методы?

Критерии оценки:

Критериями оценивания компетенций (результатов) являются:

- подготовка к занятию (оформление занятия в рабочей тетради в соответствии с методическими рекомендациями);
- ответы на устные вопросы по теме занятия и содержанию практической работы;
- активность и самостоятельность при выполнении задания;
- оформления результатов в соответствии с методическими рекомендациями;

- умение анализировать, обсуждать полученные результаты и самостоятельно формулировать выводы.

Работа считается выполненной и зачтенной, если студент в конце занятия представил отчет в соответствии с данными методическими рекомендациями.

Тестовые задания (примеры):

Задание № 1. Нарисовать строение плазматической мембраны клетки с подписями.

Задание № 2. Выбрать правильный ответ или ответы:

- 1. Основными структурообразующими липидами мембран являются: а) фосфолипиды; б триглицериды; в) каротиноиды; г) глицерин.
- 2. Преобладающими липидами в составе мембран являются: а) нейтральные липиды; б) цвиттерионные липиды; в) кислые липиды; г) стероиды.
- 3. Переход липидной фазы из гелеобразного в жидкокристаллическое состояние связан с : а) изменением конформации углеводородных цепей липидных молекул; б) укорочением углеводородных цепей липидных молекул; в) «флип-флоп»-переходом липидных молекул; г) переходом из мицеллярной фазы липидов в гексагональную.
- 4. Исключительной способностью существовать в виде бимолекулярных липидных слоев в широком интервале температур и ионных концентраций обладает: а) фосфатидилинозитол; б) фосфатидилэтаноламин; в) фосфатидилхолин; г) кардиолипин.
- 5. Общепризнанной моделью строения мембран является: а) модель Сингера-Никольсона; б) модель Даниэлли-Давсона; в) модель Робертсона; г) модель Грина.
- 6. Время жизни комплекса «белок аннулярный липид»: а) мс; б) мкс; в) с; г) ч.
- 7. К периферическим белкам относят: а) ионные каналы; б) мембранные АТФазы; в) спектрин и актин эритроцитов; г) мембранные рецепторы.
- 8. Белково-липидные домены мембран, обогащенные холестерином и сфингомиелином, называются: а) кинки; б) рафты; в) мицеллы; г) липосомы.
- 9. Плазматические мембраны эритроцитов и лимфоцитов различаются, в первую очередь, по составу и свойствам: а) белков; б) липидов; в) углеводов.
- 10. Ганглиозиды это один из типов: а) глицеролипидов; б) гликолипидов; в) стероидов; г) сфингофосфолипидов.
- 11. Для мембранных белков не характерно явление: а) вращательной диффузии; б) латеральной диффузии; в) «флип-флоп»-перехода; г) структурной асимметрии.
- 12. Ионные каналы обеспечивают: а) пассивный транспорт ионов; б) первично-активный транспорт; в) вторично-активный транспорт; г) диффузию.
- 13. Селективный фильтр это один из «компонентов»: а) транспортнойАТФазы; б) ионного канала; в) липидного бислоя; г) периферического мембранного белка.
- 14. Высокая проницаемость липидного бислоя мембран характерна для: а) ионов натрия; б) глюкозы; в) аминокислот; г) жирных кислот.
- 15. Для внутренней митохондриальной мембраны характерно высокое содержание а фосфатидилхолина; б) кардиолипина; в) холестерина; г) фостфатидилинозитола.
- 16. Для мембран животных клеток характерно высокое содержание липидов: а) фосфатидилхолин + ганглиозиды + холестерин; б) фосфатидилэтаноламин + цереброзиды + сфингомиелин; в) фосфатидилхолин + фосфатидилэтаноламин + холестерин; г) фосфатидилэтаноламин + фосфатидилхолин + сфингомиелин.
- 17. К интегральным мембранным белкам относят: а) спектрин; б) родопсин; в) белок полосы 3; г) актин; д) гликофорин.
- 18. Толщина мембраны в среднем составляет: а) 10 ангсрем; б) 10 нм; в) 0,1 мкм; г) 10 мкм.
- 19. Полярные головки липилов в мембране заряжены: а) положительно; б) отрицательно; в) не заряжены (нейтральны).
- 20. Содержание белка в эритроцитарной мембране составляет: а) 33 %; б) 18 %; в) 50 %; г) 75 %.
- 21. В основе белок-липидных взаимодействий в биомембранах лежат: а) гидрофобные взаимодействия; б) электростатические взаимодействия; в) водородные связи; г) ковалентные связи.
- 22. Время переноса молекулы фосфолипида из одного положения равновесия в другое при латеральной диффузии: а) 10^{-7} - 10^{-8} с; б) 10^{-10} - 10^{-12} с; в) 1-2 ч.
- 23. Под термином «кинки» понимают: а) области полярных групп липилов; б) изотропную область углеводородных цепей липидов; в) участок углеводородной цепи, находящийся в трансконформации; г) участок углеводородной цепи, находящийся в транс-гош-конформации.
- 24. Более высокой проницаемостью для ионов и воды обладает: а) мицеллярная фаза липидов; б) ламеллярная жидкокристаллическая фаза; в) ламеллярная гелевая фаза; г) гексагональная фаза.
- 25. Диффузию ионов в гомогенной незаряженной мембране описывает уравнение: а) электродиффузии Нернста-Планка; б) Фика; в) стационарного потенциала Гольдмана-Ходжкина.

- 26. Вид транспорта (активный или пассивный) определяется величиной: а) электрохимического потенциала; б) коэффициентом диффузии; в) изменением свободной энергии; г) проницаемостью.
- 27. К ионным каналам, имеющим внутренний сенсор внешнего сигнала, относятся: а) рецепторуправляемые каналы; б) лигандуправляемые каналы; в) потенциалуправляемые каналы.
- 28. Сенсор внешнего сигнала потенциалуправляемых натриевых и калиевых каналов сегмент S₄ α-субъединицы содержит большое количество остатков: а) нейтральных аминокислот; б) кислых аминокислот; в) основных аминокислот.
- 29. Скорость транспорта ионов через мембрану с участием ионофора составляет: а) 10^6 - 10^7 ионов в сек; б) 10^4 - 10^5 ионов в сек; в) 10^8 - 10^{10} ионов в сек; г) 10^2 - 10^3 ионов в сек.
- 30. Валиномицин по структуре и механизму действия представляет собой: а) жирную кислоту; б) полисахарид; в) антибиотик; г) детергент; д) каналоформер; е) ионофор.
- 31. Перенос иона через мембрану с помощью ионофора осуществляется с помощью: а) водородных связей; б) ковалентных связей; в) ион-дипольных взаимодействий; г) гидрофобных взаимодействий.
- 32. Грамицидин А по структуре и механизму действия является: а) полисахаридом; б) антибиотиком; в) аминокислотой; г) нейтральным ионоформ; д) каналоформером; е) детергентом.
- 33. КальциеваяАТФаза обеспечивает: а) пассивный транспорт; б) первично-активный транспорт; в) вторично-активный транспорт.
- 34. Na, K-АТФаза относится к АТФазам: a) F-типа; б) V-типа; в) P-типа.
- 35. Na, K-ATФаза функционирует в: а) электронейтральном режиме; б) электрогенном режиме.
- 36. У бактерий и растений котранспортируемым ионом в случае вторично-активного транспорта является: a) Na⁺; б) K⁺; в) Ca²⁺; г) H⁺.
- 37. Аминокислоты и сахара транспортируются через мембрану путем: а) вторично-активного транспорта; б) первично-активного транспорта; в) пассивного транспорта при помощи каналообразователей.
- 38. При передаче энергии возбуждения на молекулярный кислород от молекулы фотосенсибилизатора в триплетном возбужденном состоянии образуется: а) гидроксильный радикал; б) супероксидный анион-радикал; в) синглетный кислород; г) пероксид водорода; е) оксид азота; ж) пероксинитрит.
- 39. В результате пероксидного окисления липидов происходит: а) повышение степени гидрофобности мембраны; б) снижение степени гидрофобности мембраны; в) увеличение отрицательного заряда на поверхности мембраны; г) снижение отрицательного заряда на поверхности мембраны; д) увеличение вязкости мембраны; е) снижение вязкости мембраны.
- 40. Акцепторами коротковолнового УФ-излучения в мембранах выступают: а) белки; б) гидропероксиды липидов; в) альдегиды и кетоны; г) коферменты; д) углеводы.
- 41. В качестве прооксидантов могут выступать: а) пероксид водорода; б) гидроксильный радикал; в) аскорбиновая кислота; г) церулоплазмин; д) каталаза; е) этиловый спирт.
- 42. Взаимодействие белка с липидной мембраной в модельном эксперименте можно изучать при помощи метода: а) флуоресцентных методов; б) рентгеноструктурного анализа; в) ЭПР; г) электронной микроскопии; д) радиоактивных зондов.
- 43. К агентам, модифицирующим структурное состояние и проницаемость биомембран, относят: а) валиномицин; б) холестерин; в) лидокаин; г) фосфолипазу; д) сахарозу; е) гистидин; ж) додецилсульфат натрия.
- 44. Время жизни биомолекулы в триплетном возбужденном состоянии T_1 больше, чем в синглетном возбужденном S_1 , так как: а) происходит испускание кванта фосфоресценции в соответствии с переходом: $T_1 \rightarrow S_0 + hv_{\phi o c}$; б) происходит безызлучательный переход в основное синглетное состояние с обращением спина электрона $T_1 \rightarrow S_0$; в) переход из триплетного состояния в основное запрещен правилами отбора в связи с параллельностью спинов электронов.
- 45. Основными хромофорами УФ-излучения в белках являются: а) гистидин; б) триптофан; в) фенилаланин; г) глутамин; д) цистин.
- 46. К активным формам кислорода с низким окислительным потенциалом относят: а) синглетный кислород; б) гидроксильный радикал; в) пероксид водорода; г) супероксидный анион-радикал; д) оксид азота; е) пероксинитрит.
- 47. Для исследования изменений структурного состояния мембранных белков используют: а) метод рентгеноструктурного анализа; б) метод ЯМР; в) метод электронной микроскопии; г) метод ЭПР; д) метод ИК-спектроскопии.
- 48. В видимой области спектра энергию излучения способны поглощать компоненты биомембран: а) липиды; б) белки; в) углеводы; г) коферменты.
- 49. В УФ-области спектра энергию излучения способны поглощать компоненты биомембран: а) липиды; б) белки; в) углеводы; г) коферменты.
- 50. Биофизические методы исследования позволяют изучать: а) подвижность и упаковку углеводородных цепей липидов; б) процессы латеральной диффузии и «флип-флоп»-переходы; в) выделять в чистом виде белковые компоненты биомембран; г) исследовать фазовые переходы липидов; д) идентифицировать мембранные компоненты; е) исследовать процессы проведения нервного импульса.

Задание 3. Оценить, верно ли суждение. Исправить ошибки в неверных суждениях.

- 1. Для исследования изменений структурного состояния мембранных белков используют метод рентгеноструктурного анализа.
- 2. Детергенты в основном используют для выделения и очистки периферических мембранных белков.
- 3. Биофизические методы исследования позволяют изучать подвижность и упаковку углеводородных цепей липидов.
- 4. Микровязкость биомембран исследуют при помощи метода гель-хроматографии.
- 5. Для разделения мембранных липидов применяют метод тонкослойной хроматографии.
- 6. Взаимодействие белка с липидной мембраной в модельном эксперименте можно изучать при помощи метода радиоактивных изотопов.
- 7. Фосфатидилхолин может выполнять рецепторную функцию в биомембранах.
- 8. Полипептиды транспортируются в клетку путем облегченной диффузии с участием переносчиков.
- 9. Активный транспорт это перенос неэлектролитов и ионов против градиента химического или электрохимического потенциала, сопряженный с энергетическими затратами.
- 10. При переходе сигнала в каскаде: рецептор → G-белок → эффекторный белок исходный внешний сигнал способен к многократному усилению (амплификации).
- 11. Проапоптотический фактор цитохром с локализуется на внутренней поверхности клеточного ядра.
- 12. Переход мембранных липидов из твердокристаллического в жидкокристаллическое состояние связан с образованием рафтов.
- 13. Системы вторично-активного транспорта приводятся в действие за счет энергии, запасенной в ионных градиентах.
- 14. Важную роль в процессах модификации биомембран играет свободно-радикальное пероксидное окисление липидов.
- 15. Аденилатциклаза участвует в процессах переноса пуриновых азотистых оснований через мембрану.
- 16. Сукцинатдегидрогеназа периферический белок эритроцитов.
- 17. Молекулярными рецепторами называют специфические белки клетки, передающие любые внешние сигналы (физические, химические и биологические) внутрь клетки.
- 18. В основе липид-липидных взаимодействий лежат гидрофобные взаимодействия, водородные и дисульфидные связи.
- 19. Ионные каналы это интегральные гликопротеины, способные в результате внешних воздействий изменять проницаемость мембраны для различных ионов.
- 20. Лизофосфатидилхолин компонент фосфоинозитидной сигналтрансдукторной системы клеток.
- 21. Гемоглобин в эритроцитарной мембране связан с мембранными ганглиозидами.
- 22. Движущей силой простой диффузии незаряженного вещества через мембрану является разность электрохимических потенциалов этого вещества в двух областях, разделенных мембраной.
- 23. Стероиды обусловливают люминесцентные свойства биомембран.
- 24. В состав клеточных мембран про- и эукариотических организмов в основном входят амфифильные (дифильные) липиды.
- 25. Большинство липидных молекул находятся в ламеллярной гелевой фазе.
- 26. Общепризнанной моделью строения мембран является модель Даниэлли и Давсона.
- 27. Важные внутриклеточные регуляторы простагландины продукты метаболизма сфингозина.
- 28. Фазовые переходы липидов сопровождаются значительным повышением ионной проницаемости мембран.
- 29. Современные представления о структуре мембран основаны на жидкостно-мозаичной модели, предложенной С. Сингером и Дж. Никольсоном в 1972 году.
- 30. Протеинкиназы участвуют в синтезе провоспалительных цитокинов.
- 31. Концентрация цАМФ в цитозоле составляет в среднем 10⁻⁶ моль/л и менее, при стимуляции в клетке за несколько секунд увеличивается в 5 раз.
- 32. Движение иона по потенциалуправляемому каналу рассматривают как последовательное замещение молекул воды гидратной оболочки иона на полярные группы, выстилающие полость канала.
- 33. Большинство мембранных рецепторов представлены олигомерными мембранными белками гликопротеинами.
- 34. На внешней поверхности эритроцитарной мембраны находятся в основном нейтральные (по заряду) липиды.
- 35. Внутриклеточные ферменты интегрины участвуют в координации метаболических процессов в клетке.

- 36. В стабилизации мембран участвуют в основном ковалентные связи.
- 37. Кардиолипин один из компонентов эритроцитарной мембраны.
- 38. Наиболее важными свойствами липидов являются: лиотропный и термотропный мезоморфизм, структурная асимметрия.
- 39. Ходжкин и Хаксли сформулировали хемиоосмотическую гипотезу.
- 40. Валиномицин имеет самую высокую избирательность к ионам К+.
- 41. Интегрины гетеродимерные молекулы, функционирующие как клеточно-субстратные, так и межклеточные адгезивные рецепторы.
- 42. Для высвобождения из мембраны периферических белков необходимо использовать детергенты или органические растворители.
- 43. Облегченная диффузия веществ происходит при участии молекул переносчиков и обладает свойством насыщения.
- 44. Са²⁺-АТФаза переносит ионы кальция в цитоплазму из внеклеточной жидкости или внутриклеточных депо кальция за счет энергии гидролиза АТФ.
- 45. В роли вторичныхмессенджеров выступают малые молекулы и ионы: цАМФ, цГМФ, инозитолтрифосфат, диацилглицерол, арахидоновая кислота, ионы кальция.
- 46. Активные формы кислорода могут генерироваться в разнообразных ферментативных и неферментативных реакциях во всех частях клетки.

Задание 4. Дать определения понятиям:а) периферический мембранный белок; б) лиотропный мезоморфизм; в) «флип-флоп»-переход; г) векторный мембранный белок.

Перечень заданий для контрольных работ (примеры): Ответить на вопросы:

- 1. Назовите основные группы методов исследования биомембран. Что они позволяют изучать?
- 2. Какие методы исследования используют для изучения структурного состояния липидного компонента биомембран?
- 3. Какие методы исследования используют для изучения белок-липидных взаимодействий в биомембранах?
- 4. На какие группы подразделяют мембранные белки? Каковы особенности их строения и выполняемые функции?
- 5. Какие свойства липидных молекул обеспечивают выполнение функций мембранными белками?
- 6. С какими структурными компонентами мембраны и их свойствами связана проницаемость биомембран для различных веществ?
- 7. Какие факторы влияют на структурное состояние мембранных липидов?
- 8. Охарактеризуйте модели строения мембран.
- 9. Чем ионные каналы отличаются от ионных насосов?
- 10. Чем облегченная диффузия отличается от простой диффузии чрез липидный бислой?
- 11. Чем активный транспорт отличается от пассивного?
- 12. Опишите роль биомембран в осуществлении процессов передачи информации внутрь клетки. Что понимают под развитием первичного и вторичного ответа в процессе передачи информации в клетку?
- 13. Что представляет собой мембранный каскад передачи внешнего сигнала в клетку? Какие процессы обеспечивают компоненты этого каскада?
- 14. Что представляют собой вторичные мессенджеры? Какова их роль в клетке?
- 15. Что представляют собой рецепторы? Каковы их особенности? На какие типы подразделяют рецепторы, участвующие в приеме внешнего сигнала в клетку?
- 16. Какие патологические состояния организма человека связаны с нарушением процессов трансдукции внешнего сигнала в клетку?
- 17. Какова роль мембран в интеграции процессов клеточного метаболизма?
- 18. Каково теоретическое и практическое значение исследований, направленных на выявление механизмов передачи информации в клетку?
- 19. Какова роль мембранных липидов в процессах передачи сигналов в клетку?
- 20. Какие белки мембран называют адгезивными, каковы особенности их строения, классификация и роль в обеспечении межклеточных взаимодействий?
- 21. Какое значение имеют исследования искусственных мембранных структур? Каковы области их применения?
- 22. Что понимают под адсорбционным механизмом регулирования ферментативной активности?
- 23. Какие патологические состояния организма человека связаны с интенсификацией пероксидного окисления липидов мембран и образованием активных форм кислорода? Какие методы и подходы могут быть использованы для их лечения и профилактики?
- 24. Обоснуйте утверждение: «Биомембраны непременные участники совокупности процессов возникновения и развития ряда патологических состояний организма человека».

- 25. Какова роль компонентов биологических мембран в реализации процессов клеточной гибели?
- 26. Перед вами стоит задача: оценить роль белкового и липидного микроокружения в функционировании олигомерных мембранных АТФаз. Какого рода эксперименты вы планируете провести и почему? Какие данные могут быть получены вами?
- 27. Какие методы можно использовать для идентификации мембранных компонентов?
- 28. Есть ли различия между рецепторами сигналтрансдукторных систем клетки и рецепторами, обеспечивающими межклеточные контакты?
- 29. Какие патологические состояния организма человека связаны с нарушениями структуры и функций мембранных компонентов?
- 30. Почему транспортные АТФазы называют липидзависимыми ферментами?
- 31. Какие ученые внесли вклад в развитие теоретических представлений о структуре и функциях биомембран?
- 32. Какова роль люминесцентного метода в исследованиях биомембран?
- 33. Почему исследования структуры и функций биомембран необходимы для развития биомедицины?
- 34. Чем отличаются друг от друга мембраны эритроцитов и лейкоцитов?
- 35. С какой целью в мембранологии применяют детергенты? Какова их природа и механизмы действия на мембранные структуры?
- 36. Что означает термин «динамическое состояние» мембранных компонентов? Какие факторы влияют на динамическое состояние мембранных белков и липидов?
- 37. Чем внутренняя митохондриальная мембрана отличается от других типов мембран эукариотических клеток?
- 38. Какова роль активных форм кислорода в функционировании биомембран?
- 39. В чем состоит актуальность изучения механизмов транспорта веществ и ионов через мембрану? Каковы области практического использования результатов этих исследований?
- 40. Почему исследования структуры и функций биомембран важны для фармакологии и фармации?

Оценка знаний, умений и навыков, характеризующих этапы формирования компетенций в рамках изучения дисциплины, осуществляется в ходе текущей и промежуточной аттестации.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: устного опроса (индивидуальный опрос, фронтальная беседа, доклады); письменных работ (контрольные работы, тестирования).

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний. При оценивании используется качественная шкала оценок. Критерии оценивания приведены ниже.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Для оценивания результатов обучения на эказмене используются следующие показатели: владение теоретическими основами дисциплины, способность иллюстрировать ответ примерами, фактами, данными научных исследований, умение применять теоретические знания по дисциплине в научных исследованиях для изучения структурно-функционального состояния мембран клеток и их компонентов в норме, при воздействии физико-химических агентов и развитии патологических состояний организма человека. Соотношение показателей, критериев и шкалы оценивания результатов обучения

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Обучающийся в полной мере владеет понятийным аппаратом данной области науки (теоретическими основами дисциплины), способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач.	Повышенный уровень	Отлично

Обучающийся в целом владеет теоретическими основам дисциплины, допускает 1-2 неточности в ответе.	ли Базовый уровень	Хорошо
Обучающийся владеет частично теоретическими основам дисциплины, допускает 1-2 негрубые ошибки в ответе.	ли Пороговый уровень	Удовлетвори- тельно
Обучающийся демонстрирует отрывочные, фрагментарны знания по программе дисциплины, допускает грубые ошибки ответе.		Неудовлетвори- тельно

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

	Перечень вопросов к зачету:
№ п/п	Перечень вопросов
1.	Определение и функции биомембран. История мембранологии.
2.	Методы исследования биомембран: биохимические, физиологические, иммунологические, генетические, биофизические. Их характеристика.
3.	Биофизические методы исследования мембран: дифракционные (рентгеновская дифракция, дифракция нейтронов); резонансные (ядерный магнитный резонанс, электронный парамагнитный резонанс); оптические (абсорбционная спектроскопия, флуоресценция и метод флуоресцентных зондов, дисперсия оптического вращения, круговой дихроизм, инфракрасная спектрофотометрия); дифференциальная сканирующая микрокалориметрия; метод радиоактивных меток; метод моделирования мембран.
4.	Классификация, состав, структура, и функции мембранных липидов. Особенности липидного состава мембран клеток прокариот, эукариот и вирусов.
5.	Фазовые переходы липидов в мембране. Лиотропный и термотропный мезоморфизм липидов биомембран. Кинки, механизм их образования. Структурная асимметрия липидов. Связь между фазовым состоянием липидов и функцией мембран.
6.	Классификация, структура, функции и локализация мембранных белков.
7.	Структурно-функциональная организация мембранного каркаса эритроцитарной клетки. Характеристика основных белков эритроцитарной мембраны: спектрина, актина, белка полосы 3, гликофоринов и др.
8.	Характеристика углеводных компонентов биомембран.
9.	Структура и функции плазматических мембран на примере мембран эритроцитов.
10.	Особенности межмолекулярных взаимодействий в мембранах. Физические основы внутримембранных взаимодействий. Липид-липидные, белок-липидные и белок-белковые взаимодействия в мембранах, их роль в функционировании биомембран. Понятие об аннулярных липидах. Понятие о рафтах.
11.	Развитие представлений о структурной организации биомембран. Модели биомембран: Даниэлли и Давсона, Робертсона, Зингера и Никольсона, Конева и сотр. и др.
12.	Искусственные мембраны, липосомы и протеолипосомы, методы их получения, строение, свойства, применение в различных областях биологии и медицины. Взаимодействие липосом с клетками.
13.	Общая характеристика процессов транспорта веществ через мембрану. Движущие силы и механизмы мембранного транспорта. Термодинамические уравнения и критерии процессов пассивного и активного транспорта.
14.	Пассивный транспорт веществ. Пассивный транспорт ионов. Уравнения диффузии, проницаемости, константа проницаемости.
15.	Индуцированный ионный транспорт. Подвижные переносчики (ионофоры). Использование ионофоров в исследованиях мембран и медицине.
16.	Ионный транспорт через селективные каналы. Классификация ионных каналов. Структурно-функциональная организация ионных каналов мембран (потенциалзависимые калиевые, натриевые, кальциевые каналы).
17.	Дискретное описание транспорта через ионные каналы.

18.	Активный транспорт. Первично- и вторично-активный транспорт. Структура,			
19.	функциональные и физико-химические свойства Na, K-АТФазы и Ca – АТФазы. Молекулярные основы функционирования систем вторично-активного транспорта.			
20.	Перенос через мембрану макромолекул и частиц: экзоцитоз и эндоцитоз.			
21.	Общая характеристика процессов передачи информации в клетке. Понятие о первичных и вторичных мессенджерах.			
22.	Классификация, особенности структурно-функциональной организации мембранных белков-рецепторов.			
23.	Характеристика аденилатциклазного пути передачи сигнала в клетку.			
24.	Характеристика фосфоинозитидного пути передачи сигнала в клетку.			
25.	Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространственно-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса).			
26.	Пути нейрогуморальной регуляции функций клеток.			
27.	Адгезивные белки мембран: интегрины, кадгерины, селектины, иммуноглобулины.			
28.	Роль компонентов биомембран в осуществлении межклеточных взаимодействий. Прикрепительные, запирающие и коммуникационные контакты между клетками.			
29.	Методы модификации природных и искусственных мембран.			
30.	Свободно-радикальное пероксидное окисление липидов мембран в норме и при патологических процессах.			
31.	Активные формы кислорода, механизм их образования, свойства, пути утилизации, роль в регулировании метаболических процессов в биосистемах.			
32.	Антиоксиданты, их классификация, локализация, свойства, механизмы биологического действия. Понятие о прооксидантах и окислительном стрессе. Редокс-регуляция – один из механизмов регулирования метаболических процессов.			
33.	Клеточная гибель. Апоптоз. Некроз. Аутофагия. Роль компонентов биомембран в реализации процессов клеточной гибели.			
34.	Патологии организма человека, связанные с усилением и ослаблением процессов клеточной гибели. Регуляция процессов клеточной гибели.			
35.	Энергосопрягающие мембраны: определение, классификация, особенности строения и функционирования. Сопрягающие факторы, сопрягающие ионы.			
36.	Биогенез мембран.			
37.	Структурно-функциональные модификации молекулярных компонентов биомембран после воздействия ионизирующего излучения.			
38.	Структурно-функциональные модификации молекулярных компонентов биомембран после воздействияУФ-излучения.			

Контрольно-измерительный материал для зачета включает 2 вопроса из перечня вопросов для зачета.

Пример контрольно-измерительных материалов к промежуточной аттестации

УТВЕРЖДАЮ Заведующий кафедрой биофизики и биотехнологии В.Г. Артюхов _.._.2022

Направление 06.03.01 Биология Дисциплина Б1.В.03 Биофизика мембранных и клеточных процессов Форма обучения очная Вид контроля экзамен Вид аттестации промежуточная

- Классификация, состав, структура, и функции мембранных липидов. Особенности липидного состава мембран клеток прокариот, эукариот и вирусов.
 Характеристика аденилатциклазного пути передачи сигнала в клетку.

Преподаватель	М.А. Наквасина
проподаватоль	IVI.7 (. I IUNDUOVIIIU